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Information flow or information transfer is an important concept in general physics and dynamical systems
which has applications in a wide variety of scientific disciplines. In this study, we show that a rigorous
formalism can be established in the context of a generic stochastic dynamical system. An explicit formula has
been obtained for the resulting transfer measure, which possesses a property of transfer asymmetry and, if the
stochastic perturbation to the receiving component does not rely on the giving component, has a form the same
as that for the corresponding deterministic system. This formula is further illustrated and validated with a
two-dimensional Langevin equation. A remarkable observation is that, for two highly correlated time series,
there could be no information transfer from one certain series, say x2, to the other �x1�. That is to say, the
evolution of x1 may have nothing to do with x2, even though x1 and x2 are highly correlated. Information flow
analysis thus extends the traditional notion of correlation analysis and/or mutual information analysis by
providing a quantitative measure of causality between dynamical events.
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Information flow is a fundamental notion in general phys-
ics, and quantification of this notion has been a continuing
problem in the physics community �1–5�. Practical applica-
tions have been reported in fields like neuroscience �6� and
atmosphere-ocean science �7�, and are envisioned in the di-
verse disciplines such as turbulence research, material sci-
ence, and nanotechnology, to name a few, where ensemble
forecasts �8� are involved and predictability �9� becomes an
issue. Recently, Liang and Kleeman �3,4� established for this
important concept a rigorous formalism in the context of
deterministic dynamical systems. In this study, we will show
such a formalism can also be obtained if stochasticity is
taken into account. We consider two-dimensional �2D� sys-
tems only; systems of higher dimensionality will be reported
elsewhere �10�.

We start in this paragraph with a brief review of the work
in �3� to educe the strategy for the building of our formalism
for stochastic systems. Consider a 2D system

dx�

dt
= F� �x� ,t� , �1�

where F� = �F1 ,F2�, and the state variables x� = �x1 ,x2��R2.
The randomness is limited within the initial condition. For
simplicity, we follow the convention of notation in the phys-
ics literature and do not distinguish random variables and
deterministic variables, which should be clear in the context.
�In probability theory, they are usually distinguished with
lower and upper cases.� Let � be the joint probability density
of x1 and x2, and suppose that it and its derivatives have
compact support. Without loss of generality, consider the in-
formation transfer from x2 to x1. We need the marginal den-
sity of x1, �1�t ;x1�=�R�dx2, and the marginal �Shannon� en-
tropy, H1=−�R�1 log �1dx1. H1 varies as the system moves
forward. Its variation is due to two different mechanisms,

one due to x1 itself, written as dH
1
* /dt, another due to the

transfer from x2. The latter is the very information transfer,
which we will write as T2→1 hereafter. The rate of informa-
tion transfer from x2 to x1 is therefore the difference between
dH1 / dt and dH

1
* /dt, T2→1=dH1 / dt−dH

1
* /dt. Among the

terms on the right-hand side, dH1 / dt can be derived from the
Liouville equation �12� corresponding to Eq. �1�; the key is
the derivation of dH

1
* /dt, the entropy change as x1 evolves

on its own. In �3�, this is achieved with the aid of a
theorem established therein: The joint entropy of �x1 ,x2�, H
=−��R2� log �dx� , evolves as

dH

dt
= E�� · F� � . �2�

Here the operator E is the mathematical expectation with
respect to �. �Equation �2� holds not just for 2D systems; it is
actually true for systems of arbitrary dimensionality.� Liang
and Kleeman then intuitively argued that

dH1
*

dt
= E� �F1

�x1
� , �3�

a result later on they rigorously proved �4�, and hence ob-
tained the transfer T2→1.

The above formalism has been generalized to the infor-
mation transfer within a deterministic system of arbitrary di-
mensionality �4�; the key equation �3� has also been used to
form the transfer between two subspaces �5�. The generali-
zation, however, encounters difficulty if stochasticity is in-
volved. Consider a system

dx� = F� �x� ,t�dt + B= �x� ,t�dw� , �4�

where w� = �w1 ,w2� is a standard 2D Wiener process �dw� / dt
is usually referred to as “white noise”�, and B= = �bij� is the
perturbation amplitude. There is no such elegant form as Eq.
�2� for the evolution of H. One thus cannot obtain dH

1
* /dt

intuitively as Eq. �3� is obtained.*san@pacific.harvard.edu
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On the other hand, dH
1
* /dt may be equally understood as

the rate of change of the marginal entropy of x1 with the
effect from x2 excluded. This alternative interpretation, as we
used in �4�, sheds light on the above problem. To reflect this
interpretation, we will denote the term as dH12\ / dt hence-
forth, the subscript 2\ signifying “x2 excluded.” The rate of
information transfer from x2 to x1 is thence

T2→1 =
dH1

dt
−

dH12\

dt
. �5�

Here the key issue is how to find dH12\ / dt, which we will
show shortly after the evaluation of dH1 / dt.

To find dH1 / dt, we need to know density evolution. Cor-
responding to Eq. �4� there is a Fokker-Planck equation �12�:

��

�t
+

��F1��
�x1

+
��F2��

�x2
=

1

2 �
i,j=1

2
�2�gij��
�xi�xj

, �6�

where gij =gji=�k=1
2 bikbjk, i , j=1,2. This integrated over R

with respect to x2 gives the evolution of �1:

��1

�t
+ 	

R

��F1��
�x1

dx2 =
1

2
	

R

�2�g11��
�x1

2 dx2. �7�

Note in the derivation we have used the fact that � and its
derivatives vanish at the boundaries as they are compactly
supported. For notational succinctness, we will henceforth
suppress the integral domain R, unless otherwise noted. Mul-
tiplying Eq. �7� by −�1+log �1� followed by an integration
with respect to x1 over R, one obtains

dH1

dt
−	 	 log �1

��F1��
�x1

dx1dx2

= −
1

2
	 	 log �1

�2�g11��
�x1

2 dx1dx2.

Integrating by parts, this is reduced to

dH1

dt
= − E�F1

� log �1

�x1
� −

1

2
E�g11

�2 log �1

�x1
2 � , �8�

where E stands for expectation with respect to �.
The key part of this study is the evaluation of H12\. Exam-

ine a small time interval �t , t+�t�. H12\�t+�t� is the marginal
entropy of x1 at time t+�t as x2 is frozen as a parameter
instantaneously at t. One thence needs to consider a system
on �t , t+�t� suddenly modified at time t from that prior to t.
Clearly, H12\ cannot be derived from the Fokker-Planck equa-
tion �7�, where the dynamics is consistent through time. One
has to go back to the definition of derivative to achieve the
goal. Let the marginal entropy evolved from t to t+�t with
x2 frozen at t be H12\�t+�t�. We then have

dH12\

dt
= lim

�t→0

H12\�t + �t� − H1�t�

�t
,

and the whole problem now boils down to the derivation of
H12\�t+�t�. In �4�, we discretize the deterministic equation
�1� and evaluate the Frobenius-Perron operator for the dis-
cretized system to compute the modified marginal entropy.

For the stochastic system �4�, however, there is no such
simple operator. We need a different approach for the prob-
lem.

Denote by x12\ the first component after x2 is fixed as a
parameter. The stochastic system �4� is changed to

dx12\ = F1�x12\,x2,t�dt + �
k

b1kdwk on �t,t + �t� , �9�

x12\ = x1 at time t . �10�

Correspondingly the density �12\ evolves following the fol-
lowing Fokker-Planck equation:

��12\

�t
+

��F1�12\�

�x1
=

1

2

�2�g11�12\�

�x1
2 , t � �t,t + �t� , �11�

�12\ = �1 at t , �12�

where g11=�kb1k
2 . Recall by definition, the Shannon entropy

may be understood as the expectation of a function of the
state variable formed by minus logarithm composite with its
density. This motivates one to introduce a function of x1,
f t�x1�=log �12\�t ,x1�, whose evolution is obtained by dividing
Eq. �11� by �12\:

�f t

�t
+

1

�12\

�F1�12\

�x1
=

1

�12\

�2g11�12\

�x1
2 .

In a discretized version, this is

f t+�t�x1� = f t�x1� −
�t

�1

��F1�1�
�x1

+
�t

2�1

�2�g11�1�
�x1

2 + O��t2� ,

where the fact �12\=�1 at time t has been used. �Functions
without arguments explicitly written out are supposed to be
evaluated at x1�t�.� So

f t+�t�x12\�t + �t�� = f t�x12\�t + �t�� −
�t

�1

��F1�1�
�x1

+
�t

2�1

�2�g11�1�
�x1

2 + O��t2� .

The x12\�t+�t� in the argument can be expanded by the
Euler-Bernstein approximation �12� of Eq. �9�:

x12\�t + �t� = x1�t� + F1�t + �
k

b1k�wk + h.o.t.

�“h.o.t.” stands for “higher-order terms”�. Substituting back
and performing Taylor series expansion, we get

f t+�t�x12\�t + �t�� = f t�x1 + F1�t + �
k

b1k�wk� −
�t

�1

��F1�1�
�x1

+
�t

2�1

�2�g11�1�
�x1

2 + O��t2�

= f t�x1� +
�f t

�x1
�F1�t + �

k

b1k�wk�
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+
1

2

�2f t

�x1
2 �F1�t + �

k

b1k�wk�2

−
�t

�1

��F1�1�
�x1

+
�t

2�1

�2�g11�1�
�x1

2 + O��t2� .

�13�

Take expectation on each side with respect to their respective
random variables and equate the expectations �the equality is
a fundamental fact that defines the density evolution �12��,
the left-hand side is −H12\�t+�t�, and the first term on the
right-hand side is −H1�t�. Note that �wk
N�0,�t� for a
Wiener process wk. So

E�wk = 0, E��wk�2 = �t .

The second term on the right-hand side is

�tE�F1
�f t

�x1
� + E� �f t

�x1
�

k

b1k�wk� = �tE�F1
�f t

�x1
� ,

where we have used the fact that �wk is independent of
�x1 ,x2�, and hence expectation can be taken inside directly
with �wk, which eliminates E�

�f t

�x1
�kb1k�wk�. For the same

reason, the third term after expansion leaves only one sub-
term of order �t, namely,

1

2
E� �2f t

�x1
2 �

k

b1k�wk�
j

b1j�wj�
=

1

2
E� �2f t

�x1
2 ��

k

b1k
2 ��wk�2 + �

k�j

b1kb1j�wk�wj�� .

Recall that the perturbations are independent. The summa-
tion over k� j inside the parentheses thus vanishes after ex-
pectation is performed. The first summation is equal to g11�t,
by the definition of gij and the fact E��wk�2=�t. So the

whole term is �t
2 E�g11

�2f t

�x1
2 �. With all these put together, expec-

tation of Eq. �13� gives �note f t=log �12\�t ;x1�=log �1�

H12\�t + �t� = H1�t� − �tE�F1
� log �1

�x1
� −

�t

2
E�g11

�2 log �1

�x1
2 �

+ �tE� 1

�1

��F1�1�
�x1

� −
�t

2
E� 1

�1

�2�g11�1�
�x1

2 �
+ O��t2� .

The second and fourth terms on the right-hand side can be
combined to give �tE�

�F1

�x1
�. So

dH12\

dt
= lim

�t→0

H12\�t + �t� − H1�t�

�t

= E� �F1

�x1
� −

1

2
E�g11

�2 log �1

�x1
2 �

−
1

2
E� 1

�1

�2�g11�1�
�x1

2 � . �14�

In the equation, the second and the third terms on the right-

hand side are from the stochastic perturbation. The first term
is precisely Eq. �3�, the key result obtained in �3� through
intuitive argument based on the theorem �2�. The above deri-
vation supplies a proof of this argument.

The information transfer from x2 to x1 is obtained by sub-
tracting Eq. �14� from Eq. �8�:

T2→1 = − E�F1
� log �1

�x1
� − E� �F1

�x1
� +

1

2
E� 1

�1

�2�g11�1�
�x1

2 �
= − E� 1

�1

��F1�1�
�x1

� +
1

2
E� 1

�1

�2�g11�1�
�x1

2 � , �15�

where E is the expectation with respect to ��x1 ,x2�. Notice
that the conditional density of x2 on x1, �2
1, is � /�1. If we
define an operator E2
1 such that E2
1f is the expectation of
f = f�x1 ,x2� with respect to �2
1, followed by an integration
with x1 over R, i.e.,

E2
1f =	 	 �2
1�x2
x1�f�x1,x2�dx1dx2,

then the above formula may be further simplified:

T2→1 = − E2
1� ��F1�1�
�x1

� +
1

2
E2
1� �2�g11�1�

�x1
2 � . �16�

This is the transfer from x2 to x1. Likewise, the transfer from
x1 to x2 can be obtained:

T1→2 = − E1
2� ��F2�2�
�x2

� +
1

2
E1
2� �2�g22�2�

�x2
2 � , �17�

where �2=��dx1 is the marginal density of x2.
Among the two terms of Eq. �16� the first is the same in

form as the information transfer obtained in �3� for the cor-
responding deterministic system. The contribution from the
stochasticity that modifies the formula is in the second term.
An interesting observation is that, if g11=�kb1k

2 is indepen-
dent of x2, this term vanishes. To see this, notice that
��2
1dx2=1, which results in

E2
1� �2�g11�1�
�x1

2 � =	 �2�g11�1�
�x1

2 dx1 = 0.

We thus have the following property:
Given a stochastic system component, if the stochastic

perturbation is independent of another component, then the
information transfer from the latter is the same in form as
that for the corresponding deterministic system.

This property is interesting since a large proportion of
noise appearing in real problems is additive, that is to say,
bij, and hence gij, are often constant. This theorem shows
that, in terms of information transfer, these stochastic sys-
tems function like deterministic; but, of course, the similarity
is just in form; they are different in value. The first part on
the right-hand side of Eq. �16� actually has stochasticity em-
bedded in the marginal density. Besides, for deterministic
systems the differential entropy may go to minus infinity
�think about the attractor of a fixed point or limit cycle �13��,
while this does not make a problem for the stochastic case.
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Another property is the concretization of the requirement
of transfer asymmetry emphasized in �2�:

If the evolution of x1 is independent of x2,

then T2→1 is zero.

In fact, if neither F1 nor g11 have dependency on x2, the
integrals in Eq. �7� can be evaluated and the whole equation
becomes a Fokker-Planck equation for �1. In this case, x1
behaves like an independent variable. So by intuition, there
should be no information flowing from x2. This is indeed true
by formula �16�. If F1=F1�x1�, integration can be made for
�2
1 with respect to x2 inside the double integral, giving a
zero T2→1.

To help further understand the formulas �16� and �17�,
consider a 2D linear system:

dx� = A= x�dt + B= dw� , �18�

where A= = �aij� and B= = �bij� are constant matrices. Further
suppose that x� has an initial Gaussian distribution; it is then
Gaussian all the time �14�, with a mean �� = ��1 ,�2�T and a
covariance matrix C= = �cij� evolving as

d�� /dt = A= �� , �19a�

dC= /dt = A= C= + C= A= T + B=B= T. �19b�

The solution of these equations determines the density

��x� � =
1

2�
C= 
1/2e−1/2�x� − �� �TC= −1�x�−�� �,

which, after substituted into Eqs. �16� and �17�, gives the
transfers between x1 and x2.

For an example, let all the entries of B= be 1, and a11
=a22=−0.5, a12=0.1, leaving a21 open for experiment. First
consider a21=0. It is easy to show that this system has an
equilibrium solution: �� = �0,0�, c11=2.44, c12=c21=2.2, c22

=2, whatever the initial conditions are. Figure 1�a� shows the
time evolutions of �� and C= initialized with �� �0�= �1,2� and
c11�0�=c22�0�=9, c12�0�=c21�0�=0; also shown is a sample
path of x� starting from �� �0�. In this system, F2=−0.5x2 has
no dependence on x1, and gij =�kbikbjk are all constants, so
T1→2=0 by the property established above. The computed
result confirms this inference. In Fig. 1�c�, T1→2 is zero
through time. The other transfer, T2→1, increases monotoni-
cally and eventually approaches a constant.

An interesting observation about the typical sample path
in Fig. 1�b� is the high correlation between x1 and x2, in

contrast to the zero information transfer T1→2. That is to say,
even though x1�t� and x2�t� are highly correlated, the evolu-
tion of x2 has nothing to do with x1. Through this simple
example one sees how information transfer may extend the
traditional notion of correlation analysis and/or mutual infor-
mation analysis by including causality �15�.

In the second experiment, we let a21=0.1=a12, resulting
in a system symmetric between x1 and x2. One thus naturally
expects two transfers equal in value. The computed results
show that this is indeed so. The transfer T2→1 is equal to
T1→2 �not shown�. �If �1��2, initially they may be differ-
ent, but merge together soon after the transient period.� In the
third experiment, a21=0.2�a12; the influence of x1 on x2 is
larger than that of x2 on x1, so one expects a larger T1→2 than
T2→1. Again, the computed result agrees with the inference
�not shown�. The formulas �16� and �17� are verified with
this example.

We have rigorously established a formalism of informa-
tion transfer within 2D stochastic dynamical systems, which
is measured by the rate of entropy transferred from one com-
ponent to another. The measure possesses a property of trans-
fer asymmetry and, if the stochastic perturbation to the re-
ceiving component does not rely on the giving component,
has a form the same as that for the corresponding determin-
istic system. The resulting formulas �16� and �17� can be
applied to any systems when the underlying dynamics is
given. When the dynamics is unknown but two time series
are given, one may fit the data into a 2D model in the form of
Eq. �4� and then compute the information transfer. Theoreti-
cally this is possible, but technical difficulties still exist in
estimating stochastic differential equations. Nonetheless, a
large number of problems can be approximately described by
linear systems. In that case, an explicit expression of data-
based information transfer can be derived from Eqs. �16� and
�17�. Particularly, for two demeaned time series, �x1

n�n and
�x2

n�n, with stochasticity due to independent perturbations,
Eqs. �16� and �17� are reduced to two concise formulas in
terms of the covariance matrix between the two series �10�.
We have used these formulas to investigate the air-sea inter-
action that leads to the recent climate change �11� and ob-
tained important results; more applications are expected to
follow up in other research fields.

The author has benefited from several important scientific
discussions with Richard Kleeman. He also read through an
early version of the paper and his remarks are sincerely ap-
preciated. The insightful comments from a referee helped
improve the paper.
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